17 research outputs found

    Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects

    Get PDF
    Zolotareva O, Saik OV, Königs C, et al. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Scientific Reports. 2019;9(1): 16302.Asthma and hypertension are complex diseases coinciding more frequently than expected by chance. Unraveling the mechanisms of comorbidity of asthma and hypertension is necessary for choosing the most appropriate treatment plan for patients with this comorbidity. Since both diseases have a strong genetic component in this article we aimed to find and study genes simultaneously associated with asthma and hypertension. We identified 330 shared genes and found that they form six modules on the interaction network. A strong overlap between genes associated with asthma and hypertension was found on the level of eQTL regulated genes and between targets of drugs relevant for asthma and hypertension. This suggests that the phenomenon of comorbidity of asthma and hypertension may be explained by altered genetic regulation or result from drug side effects. In this work we also demonstrate that not only drug indications but also contraindications provide an important source of molecular evidence helpful to uncover disease mechanisms. These findings give a clue to the possible mechanisms of comorbidity and highlight the direction for future research

    HOST GENETICS OF SUSCEPTIBILITY Mutations in genes underlying atypical familial mycobacteriosis are not found in tuberculosis patients from Siberian populations

    Get PDF
    s u m m a r y Objectives: Atypical familial mycobacteriosis (AFM, OMIM #209950) is caused by mutations in genes regulating IL12/IFNG pathway. Some of the mutations exhibit incomplete penetrance, and they have been proposed to be involved in the common (polygenic) predisposition to tuberculosis (TB). We set out to test this hypothesis in two populations from Siberian region of Russia with high prevalence of TB. Material and methods: The prevalence of twelve mutations in IL12/IFNG pathway genes of were analysed in 331 Russians and 238 Tuvinians TB patients and in 279 healthy Russians and 265 healthy Tuvinians. A screening for new mutations and rare polymorphisms was carried out in 10 children with severe generalized TB and severe BCG-vaccine complications using Sanger's bidirectional sequencing. Results: Twelve mutations most commonly identified in AFM patients appeared to be "wild-type" monomorphic in the studied groups. No new mutations or rare polymorphisms were identified by sequencing. However, 15 common single nucleotide polymorphisms were found, none of which was associated with TB after correction for multiple testing. Conclusion: The results of the study contradict with a hypothesis that mutations underlying AFM syndrome are involved in the predisposition to TB

    Meta-analysis identifies seven susceptibility loci involved in the atopic March

    Get PDF
    Eczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10 a'8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10 a'9). Additional susceptibility loci identified

    GenCoNet - A Graph Database for the Analysis of Comorbidities by Gene Networks

    No full text
    Shoshi A, Hofestädt R, Zolotareva O, et al. GenCoNet - A Graph Database for the Analysis of Comorbidities by Gene Networks. JOURNAL OF INTEGRATIVE BIOINFORMATICS. 2018;15(4): 20180049.The prevalence of comorbid diseases poses a major health issue for millions of people worldwide and an enormous socio-economic burden for society. The molecular mechanisms for the development of comorbidities need to be investigated. For this purpose, a workflow system was developed to aggregate data on biomedical entities from heterogeneous data sources. The process of integrating and merging all data sources of the workflow system was implemented as a semi-automatic pipeline that provides the import, fusion, and analysis of the highly connected biomedical data in a Neo4j database GenCoNet. As a starting point, data on the common comorbid diseases essential hypertension and bronchial asthma was integrated. GenCoNet (https: / /genconet.kalis-amts.de) is a curated database that provides a better understanding of hereditary bases of comorbidities

    GenCoNet – A Graph Database for the Analysis of Comorbidities by Gene Networks

    No full text
    The prevalence of comorbid diseases poses a major health issue for millions of people worldwide and an enormous socio-economic burden for society. The molecular mechanisms for the development of comorbidities need to be investigated. For this purpose, a workflow system was developed to aggregate data on biomedical entities from heterogeneous data sources. The process of integrating and merging all data sources of the workflow system was implemented as a semi-automatic pipeline that provides the import, fusion, and analysis of the highly connected biomedical data in a Neo4j database GenCoNet. As a starting point, data on the common comorbid diseases essential hypertension and bronchial asthma was integrated. GenCoNet (https://genconet.kalis-amts.de) is a curated database that provides a better understanding of hereditary bases of comorbidities

    Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature

    Get PDF
    Saik, Olga V, Demenkov PS, Ivanisenko, Timofey V, et al. Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature. JOURNAL OF INTEGRATIVE BIOINFORMATICS. 2018;15(4): 20180054.Comorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including ILIA, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes

    Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature

    No full text
    Comorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including IL1A, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes

    shRNA-Induced Knockdown of a Bioinformatically Predicted Target IL10 Influences Functional Parameters in Spontaneously Hypertensive Rats with Asthma

    No full text
    One of the most common comorbid pathology is asthma and arterial hypertension. For experimental modeling of comorbidity we have used spontaneously hypertensive rats with ovalbumin (OVA)-induced asthma. Rats were randomly divided into three groups: control group, OVA-induced asthma group; OVA-induced asthma + IL10 shRNA interference group. Target gene (IL10) was predicted by ANDSystem. We have demonstrated that RNA-interference of IL10 affected cardiovascular (tested using Millar microcatheter system) as well as respiratory functions (tested using force-oscillation technique, Flexivent) in rats. We have shown that during RNA-interference of IL10 gene in vivo there were changes in both cardiac and lung function parameters. These changes in the cardiovascular parameters can be described as positive. But the more intensive heart workload can lead to exhaust and decompensation of the heart functions. Knockdown of IL10 gene in asthma modeling induces some positive changes in respiratory functions of asthmatic animals such as decreased elastance and increased compliance of the lungs, as well as less pronounced pathomorphological changes in the lung tissue. Thus, we provide the data about experimentally confirmed functionality changes of the target which was in silico predicted to be associated with both asthma and hypertension – in our new experimental model of comorbid pathology

    shRNA-Induced Knockdown of a Bioinformatically Predicted Target IL10 Influences Functional Parameters in Spontaneously Hypertensive Rats with Asthma

    Get PDF
    Drevytska T, Morhachov R, Tumanovska L, et al. shRNA-Induced Knockdown of a Bioinformatically Predicted Target IL10 Influences Functional Parameters in Spontaneously Hypertensive Rats with Asthma. JOURNAL OF INTEGRATIVE BIOINFORMATICS. 2018;15(4): 20180053.One of the most common comorbid pathology is asthma and arterial hypertension. For experimental modeling of comorbidity we have used spontaneously hypertensive rats with ovalbumin (OVA)-induced asthma. Rats were randomly divided into three groups: control group, OVA-induced asthma group; OVA-induced asthma + IL10 shRNA interference group. Target gene (IL10) was predicted by ANDSystem. We have demonstrated that RNA-interference of IL10 affected cardiovascular (tested using Millar microcatheter system) as well as respiratory functions (tested using force-oscillation technique, Flexivent) in rats. We have shown that during RNA-interference of IL10 gene in vivo there were changes in both cardiac and lung function parameters. These changes in the cardiovascular parameters can be described as positive. But the more intensive heart workload can lead to exhaust and decompensation of the heart functions. Knockdown of IL10 gene in asthma modeling induces some positive changes in respiratory functions of asthmatic animals such as decreased elastance and o increased compliance of the lungs, as well as less pronounced pathomorphological changes in the lung tissue. Thus, we provide the data about experimentally confirmed functionality changes of the target which was in silico predicted to be associated with both asthma and hypertension - in our new experimental model of comorbid pathology
    corecore